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Abstract. Spherical continuum Sturmian functions for the Schrödinger–Coulomb and Dirac–
Coulomb problems are constructed by solving appropriate Sturm–Liouville systems. It is proved
that in the non-relativistic case a spectrum of potential strengths is continuous and covers the
whole real axis. In the relativistic case two Sturmian sets may be derived. For the relativistic
Sturm–Liouville problems their eigenvalue spectra consist of the real axes with zero excluded
plus circumferences in the complex plane centred at zero. It is shown that, as a consequence of
a relationship existing between the two families of the continuum Dirac–Coulomb Sturmians,
each family obeys two orthogonality and two closure relations.

1. Introduction

In theoretical analysis of atomic and molecular phenomena one frequently uses various
functional basis sets for representing wave or Green functions of a particular physical
system in forms of series or integral expansions (for a comprehensive review, see [1]).
Although in principle any complete set may be used for this purpose, it is well known
that for particular applications some basis sets are more suitable than others. On physical
grounds it is expected, and experience confirms these expectations, that adequate functions
may be frequently generated by solving an eigenvalue problem consisting of some solvable
time-independent model wave equation, with structure reflecting the main physical features
of a system considered, plus appropriate boundary conditions. Usually, in such problems
one chooses energy as an eigenvalue and functions generated in that way are called ‘energy
eigenfunctions’. In some cases, however, it may be more profitable to obtain a basis in an
alternative way by treating the energyE as a fixed parameter and introduce an eigenvalue
parameter in some other place in the wave equation. Functions generated in that manner
are generally referred to as ‘Sturmian functions’ [2, 3].

Among a variety of Sturmian basis sets which may be obtained by making different
choices of wave equations and eigenvalue parameters, Coulomb Sturmian functions are of
particular value because of the exceptional role played in atomic physics by the Coulomb
problem (cf [2–4] and references therein). In the non-relativistic case they are solutions
of the Schr̈odinger–Coulomb wave equation with a fixed value of the energy parameter,
augmented by appropriate boundary conditions, and with the strength of the Coulomb
potential chosen as an eigenvalue. (In the relativistic case the Dirac–Coulomb Sturmians
have to be defined in a more involved way, cf [4] and sections 4 and 5 of this work.)
It is known [3, 5, 6] that two different types of the Coulomb Sturmian functions may be
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constructed according to the domain from which the energy parameterE is chosen. In the
non-relativistic case, ifE < 0, it appears that the Schrödinger–Coulomb Sturmians form a
discrete set [2, 3]. Properties of the discrete Sturmians have been thoroughly investigated
and the functions are widely used in atomic physics (for a comprehensive bibliography,
see [2, 4]). In contrast, studies concerning the Schrödinger–Coulomb Sturmians for which
E > 0 are scarce. Searching through the literature we found that the problem of constructing
non-relativistic positive-energy Coulomb Sturmian states was considered, very briefly, by
Khristenko [3], Blinder [5, 6] and more recently, in a different way, by Ovchinnikov and
Macek [7]. Khristenko [3] defined positive-energy Sturmian functions as those solutions of
the Schr̈odinger–Coulomb equation withE > 0 which, after multiplication by the radiusr,
remained bounded for 06 r 6 ∞. He found that the spectrum of potential strengths was
continuous and covered the whole real axis. In two works concerning Sturmian propagators
for the non-relativistic attractive Coulomb problem Blinder [5, 6] postulated the same
form of the positive-energy Schrödinger–Coulomb Sturmians as had been found before
by Khristenko but, in disagreement with Khristenko’s results, claimed that the spectrum of
potential strengths was limited to the positive real half-axis.

A different approach to the problem was proposed by Ovchinnikov and Macek [7]. In a
work concerning positive-energy Sturmians fortwo-Coulomb-centre problems these authors
defined the non-relativisticone-centre positive-energy Coulomb Sturmian states, as those
solutions of the Schrödinger–Coulomb wave equation withE > 0 which were regular at
the origin and behaved as purely outgoing waves forr → ∞. Functions defined in that
manner are analytic continuation of the negative-energy Sturmians to the positive-energy
domain. The potential-strength spectrum for this problem was found to be discrete and
purely imaginary. The Sturmians obtained in that way possess, however, a deficiency
owing to a long-range nature of the Coulomb field: they become unbounded asr increases
to infinity. For that reason, in spite of claims to the contrary [7], Ovchinnikov and Macek’s
Sturmians fail to obey a simple orthogonality relation and it is difficult to infer anything
about the completeness of this set.

We have found the situation to be unsatisfactory and decided to reinvestigate the subject.
Because of the difficulty encountered by the method of Ovchinnikov and Macek, in this work
we have adopted the approach of Khristenko. We present a method of construction of a set
of the non-relativistic positive-energy (orcontinuum) Schr̈odinger–Coulomb Sturmians and
discuss their basic properties. It is shown that the spectrum of potential-strength eigenvalues
coincides with thewholereal axis. This resolves the disagreement between Khristenko’s and
Blinder’s results in Khristenko’s favour. We also discuss important problems concerning
orthogonality and normalization of the positive-energy Schrödinger–Coulomb Sturmians.

In recent years one observes a rapid growth of interest in developing mathematical
tools suitable for the use in relativistic theoretical atomic physics [8, 9]. Therefore, it is
natural to ask whether it would be possible to find a relativistic analogue of the continuum
Schr̈odinger–Coulomb Sturmians: the continuum Dirac–Coulomb Sturmian functions. Such
a set (or sets) should be useful in the analysis of those atomic continuum processes where
the relativity is expected to play an important role. We have studied the subject in a manner
similar to that used in our study of discrete Dirac–Coulomb Sturmians [4] and found that
the answer is positive: by solving suitable boundary-value problems with a fixed value of
the energy parameter selected so that|E| > mc2 and with cleverly chosen eigenvalues it is
possible to constructtwo different sets of continuum Dirac–Coulomb Sturmian functions.
A detailed analysis of properties of these functions, presented in sections 4 and 5, leads to
the conclusion that the eigenvalue spectrum for each problem is continuous and consists of
the real axis with zero excluded, plus a circumference in the complex plane centred at zero.
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It is also found that, as a consequence of a relationship existing between the two sets of
the relativistic continuum Sturmians, both functional sets obeytwo orthogonality andtwo
closure relations.

2. The continuum Schr̈odinger–Coulomb Sturmian functions

We define the three-dimensional continuum Schrödinger–Coulomb Sturmian functions
{8µllml (E, r)} as simultaneous eigenfunctions of the orbital angular momentum operators

Λ2 = −[r ×∇]2 3z = −i

[
x
∂

∂y
− y ∂

∂x

]
(1)

with quantum numbersl(l + 1) and ml , respectively, satisfying an eigenvalue problem
consisting of the Schrödinger–Coulomb differential equation[

− h̄
2

2m
∇2− µl Ze

2

r
− E

]
8µllml (E, r) = 0 (2)

and the boundary conditions

r8µllml (E, r)
r→0∼ rl+1 r8µllml (E, r) bounded forr →∞. (3)

HereE > 0 andZ are fixed real parameters andµl is an eigenvalue for the problem. Since
the Sturmians are eigenfunctions ofΛ2 and3z, they are of the form

8µllml (E, r) =
1

r
Sµl l(2λr)Ylml (n) (4)

wheren = r/r is the unit vector directed alongr and {Ylml (n)} are normalized spherical
harmonics. The functions{Sµll(2λr)} are the radial continuum Schrödinger–Coulomb
Sturmians and are non-trivial solutions of the Sturm–Liouville problem[
− h̄

2

2m

d2

dr2
+ h̄2

2m

l(l + 1)

r2
− µl Ze

2

r
− E

]
Sµll(2λr) = 0 (06 r <∞) (5)

Sµll(2λr)
l∼ r → 0rl+1 Sµll(2λr) bounded forr →∞ (6)

which may be obtained in the standard way after substitution of the functions (4) into
equations (2) and (3). For the sake of convenience, we have chosen the argument ofSµll
as 2λr, where

λ =
√

2mE

h̄2 (7)

rather thanr. SinceE > 0, the parameterλ is real and positive. In this section it will be our
primary aim to find the explicit form of the radial functions{Sµll(2λr)} and to investigate
their properties.

To accomplish this aim, we change the independent variable to

x = 2λr (8)

and rewrite the Sturm–Liouville problem (5) and (6) in the form[
d2

dx2
−
(
l + 1

2

)2− 1
4

x2
+ ηl
x
+ 1

4

]
Sµll(x) = 0 (06 x <∞) (9)

Sµll(x)
x→0∼ xl+1 Sµll(x) bounded forx →∞ (10)
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with ηl defined as

ηl = µl Zme
2

h̄2λ

(
= µl Z

λa0

)
(11)

wherea0 is the Bohr radius. Equation (9) resembles the Whittaker differential equation
[10, 11], the only difference between the two equations being in the sign in front of1

4.
The difference vanishes if one changes the differentiation variable fromx to ix. With this
transformation equation (9) becomes[

d2

d(ix)2
− (l +

1
2)

2− 1
4

(ix)2
+ −iηl

ix
− 1

4

]
Sµll(x) = 0. (12)

A solution to this equation which satisfies the boundary condition imposed onSµll(x) at
x = 0 is [10]

S̃µl l(x) = AµllM−iηl ,l+1/2(ix) (13)

whereMηγ (x) is the Whittaker function of the first kind andAµll is a normalization factor.
The tilde indicates that so far we have taken care of the boundary condition at the origin
but not of the one at infinity.

We now ask the question: for what values of the parameterµl is the functionS̃µl l(x)
defined by equation (13) bounded forx → ∞? To answer this question we utilize the
expansion (193) obtaining the asymptotic form of the functionS̃µl l(x)

S̃µl l(x)
x→∞−→ 1

2i
B
(+)
µl l

exp[i( 1
2x + ηl ln x − 1

2πl − σl(ηl))]

− 1

2i
B
(−)
µl l

exp[−i( 1
2x + ηl ln x − 1

2πl + σl(−ηl))] (14)

where

B
(±)
µl l
= 2il+1e−πηl/20(2l + 2)

|0(l + 1± iηl)| Aµll (15)

andσγ (±η) is the Coulomb phase shift defined as

σγ (±η) = arg0(γ + 1± iη) (16)

(complex values ofη are also admitted in equation (16)). It is evident from equation (14)
that the functionS̃µl l(x) remains bounded forx → ∞ as long as the parameterηl is real
(for, if Im ηl 6= 0 thenS̃µl l(x) diverges forx →∞ asx |Im ηl |). In view of the relationship
(11) and the assumptions made concerningE andZ, this implies that the Sturm–Liouville
problem (9) and (10) (or, equivalently, (5) and (6)) has a continuous spectrum of real
eigenvalues

−∞ < µl < +∞. (17)

It is clear from the above considerations that there is a one-to-one correspondence between
the eigenfunctionsSµll(x) and the eigenvaluesµl , i.e. for fixed l the eigenvaluesµl are
non-degenerate. Since the range of the eigenvaluesµl is the same for alll, henceforth we
shall omit the subscriptl at µl andηl .

The result (17) dissolves, in Khristenko’s favour, the discrepancy between the result
found by that author [3], who concluded that the spectrum ofµ-eigenvalues covered the
whole real axis, and the result obtained by Blinder [5, 6], who claimed that the spectrum
was restricted to the real positive half-axis.
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The reality ofη may be exploited to simplify the asymptotic expression (14). It follows
from the definition (16) and the well known properties of the Euler gamma function [10]
that for realη andγ one has

|0(γ + 1+ iη)| = |0(γ + 1− iη)| σγ (−η) = −σγ (η). (18)

Hence and from equation (14) one infers that

Sµl(x)
x→∞−→ Bµl sin( 1

2x + η ln x − 1
2πl − σl(η)) (19)

where

Bµl = 2il+1e−πη/20(2l + 2)

|0(l + 1+ iη)| Aµl. (20)

We shall now consider a problem of orthogonality and normalization of the radial
SturmiansSµl(x) constructed above. Since we have encountered continuum spectrum, the
problem is more subtle than in the case of negative-energy discrete Sturmians [2]. Initially,
we consider two solutions to the boundary-value problem (9) and (10),Sµl(x

′) andSµ′l(x ′),
corresponding to eigenvaluesµ andµ′, respectively. Premultiplying the equation satisfied
by Sµl(x ′) by Sµ′l(x ′) and vice versa, subtracting the results, integrating fromx ′ = 0 to
x ′ = x and utilizing the boundary condition atx ′ = 0 we obtain

(η − η′)
∫ x

0
dx ′

1

x ′
Sµl(x

′)Sµ′l(x ′) = Sµl(x)dSµ′l(x)

dx
− Sµ′l(x)dSµl(x)

dx
(21)

where

η′ = µ′ Z
λa0

. (22)

If x is sufficiently large, we may replace the Sturmians on the right-hand side by their
asymptotic forms (19). After some simple algebra one obtains∫ x

0
dx ′

1

x ′
Sµl(x

′)Sµ′l(x ′)
x→∞−→ 1

2
BµlBµ′l

sin[(η − η′) ln x − (σl(η)− σl(η′))]
η − η′ . (23)

In the limit x → ∞ the fraction on the right-hand side tends to one of the well known
representations of the Dirac delta functionδ(η − η′) timesπ [13], so that∫ ∞

0
dx

1

x
Sµl(x)Sµ′l(x) = π

2
B2
µlδ(η − η′). (24)

We find it convenient to normalize the radial Sturmians according to∫ ∞
0

dx
|Z|
x
Sµl(x)Sµ′l(x) = δ(µ− µ′). (25)

If we chooseBµl to be positive, equation (11) and condition (25) yield

Bµl =
√

2

πλa0
. (26)

Hence and from equation (20) it follows that

Aµl = eπη/2

il+1
√

2πλa0

|0(l + 1+ iη)|
0(2l + 2)

. (27)

Consequently, the radial continuum Schrödinger–Coulomb Sturmian functions normalized
according to equation (25) are given by

Sµl(x) = eπη/2

il+1
√

2πλa0

|0(l + 1+ iη)|
0(2l + 2)

M−iη,l+1/2(ix). (28)
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An equivalent form of the radial Sturmians

Sµl(x) = il+1eπη/2√
2πλa0

|0(l + 1+ iη)|
0(2l + 2)

Miη,l+1/2(−ix) (29)

is obtained if in equation (28) one makes use of the Kummer transformation (197). It may
be easily verified by utilizing any of equations (28) and (29) and the complex conjugation
relation (198) that the radial functions{Sµl(x)} are real.

Since the radial functions{Sµl(x)} are eigenfunctions of the Hermitian Sturm–Liouville
problem, they form a complete set. On multiplying both sides of equation (25) by
Sµl(x

′), integrating over the complete spectrum ofµ-eigenvalues, interchanging the order
of integrations overµ andx and making use of fundamental properties of the Dirac delta
function we obtain∫ ∞

0
dx Sµ′l(x)

|Z|
x

∫ ∞
−∞

dµSµl(x)Sµl(x
′) = Sµ′l(x ′). (30)

Hence, a closure relation

|Z|
x ′

∫ ∞
−∞

dµSµl(x)Sµl(x
′) = δ(x − x ′) (31)

follows.
Once the radial Sturmians{Sµl(2λr)} are known, the three-dimensional Sturmians

{8µlml (E, r)} may be found in accord with equation (4). Moreover, the following
orthogonality ∫

R3
d3r
|Z|
r
8∗µlml (E, r)8µ′l′m′l (E, r) = δ(µ− µ′)δll′δmlm′l (32)

and closure

|Z|
r ′
∑
lml

∫ ∞
−∞

dµ8µlml (E, r)8
∗
µlml

(E, r′) = δ(r − r′) (33)

relations for the functions{8µlml (E, r)} are readily deduced from equations (4), (25) and
(31) and from the well known properties of the spherical harmonics. Throughout the paper
the asterisk denotes the complex conjugation.

In appendix B we briefly discuss an important difference between the continuum
Coulomb and non-Coulomb Sturmian functions.

3. Expansions in terms of the continuum Schr̈odinger–Coulomb Sturmian functions

Any sufficiently regular functionF(x) defined on the real positive half-axis 06 x < ∞
may be represented as an integral involving the radial Sturmians{Sµl(x)} in the following
manner

F(x) =
∫ ∞
−∞

dµχµlSµl(x) (34)

where the functionχµl is determined from the orthogonality relation (25) to be

χµl =
∫ ∞

0
dx
|Z|
x
Sµl(x)F (x). (35)

The functionχµl may be called a ‘Coulomb Sturmian transform’ of the functionF(x).



The continuum Coulomb Sturmian functions 4969

In the three-dimensional case, any sufficiently regular function9(r) has a Sturmian
representation

9(r) =
∑
lml

∫ ∞
−∞

dµχµlml8µlml (E, r). (36)

The transform functionχµlml may be found from the latter equation by premultiplying it
with r−1|Z|8∗

µ′l′m′l
(E, r) and integrating the result overR3. Utilizing the orthogonality

relation (32) and omitting the primes yields

χµlml =
∫
R3

d3r
|Z|
r
8∗µlml (E, r)9(r). (37)

4. The continuum Dirac–Coulomb Sturmian functions of the first kind

Let σ = (σx, σy, σz) be a vector constructed from the Pauli matrices and letI be the unit
2× 2 matrix. We introduce the 4× 4 matrices

α =
(

0 σ
σ 0

)
β =

(
I 0
0 −I

)
Σ =

(
σ 0
0 σ

)
I =

(
I 0
0 I

)
(38)

and the operators

K = −β(Σ ·Λ+ I) Λ = −ir ×∇. (39)

The four-component continuum Dirac–Coulomb Sturmian functions of the first kind,
{8µκκmj (E, r)}, are defined as those simultaneous eigenfunctions of the operatorsK and
Jz = 3z + 1

26z, with the respective eigenvaluesκ andmj , which are solutions of the
boundary-value problem consisting of the set of four coupled first-order partial differential
equations [

−ich̄α · ∇+ βmc2− EI −Mκ

Ze2

r

]
8µκκmj (E, r) = 0 (40)

augmented by boundary conditions

r8µκκmj (E, r)
l∼ r → 0rγκ r8µκκmj (E, r) bounded forr →∞. (41)

HereE andZ are fixed real parameters such that

|E| > mc2 0< α|Z| < 1 (42)

α = e2/ch̄ (not to be confused with the matrixα) is the Sommerfeld fine structure constant,
the exponentγκ is defined by

γκ = +
√
κ2− (αZ)2 (43)

Mκ is the 4× 4 matrix of the form

Mκ =
(
µκI 0

0 µ−1
κ I

)
(44)

andµκ is an eigenvalue for the problem (40) and (41). The boundary conditions (41) are
to be understood in the sense that any of the four components ofr8µκκmj (E, r) vanishes
like rγκ for r → 0 and is bounded forr →∞.

A brief comment is in order here. The boundary condition imposed on the Sturmians
in the vicinity of r = 0 is chosen to be identical with the one obeyed there by the Dirac–
Coulomb wave functions of the same angular symmetry. It was shown by Drake and
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Goldman [14] that it is this choice that demands the unusual way in which the eigenvalue
µκ enters equation (40).

Since the Sturmians are eigenfunctions of the operatorsK andJz, they have the form

8µκκmj (E, r) =
1

r

(
Sµκκ(2λr)�κmj (n)

iTµκκ(2λr)�−κmj (n)

)
(45)

where {Sµκκ(2λr)} and {Tµκκ(2λr)} are the radial continuum Dirac–Coulomb Sturmians,
n = r/r is the unit vector alongr and{�±κmj (n)} are spherical spinors. The parameterλ

entering the argument of the Sturmians is defined as

λ =
√
(E −mc2)(E +mc2)

ch̄
(46)

and in the non-relativistic limit it converges to the quantity defined by equation (7). We
notice also that, since|E| > mc2, the parameterλ is real and positive. After substitution
of the function (45) into equations (40) and (41), the angular part of the problem may be
separated out in the standard way [15] and one finds that the radial Sturmians are non-trivial
solutions to the Sturm–Liouville problem(
(mc2− E)/ch̄− µκαZ/r −d/dr + κ/r

d/dr + κ/r −(mc2+ E)/ch̄− µ−1
κ αZ/r

)(
Sµκκ(2λr)
Tµκκ(2λr)

)
= 0

(06 r <∞) (47)

Sµκκ(2λr)
l∼ r → 0rγκ Tµκκ(2λr)

l∼ r → 0rγκ (48)

Sµκκ(2λr) andTµκκ(2λr) bounded forr →∞. (49)

It is convenient to change the independent variable by the transformation

x = 2λr (50)

and introduce parameters

ε =
√
E −mc2

E +mc2
ζ = αZ. (51)

With this transformation, equations (47)–(49) become(−ε/2− µκζ/x −d/dx + κ/x
d/dx + κ/x −ε−1/2− µ−1

κ ζ/x

)(
Sµκκ(x)

Tµκκ(x)

)
= 0 (06 x <∞) (52)

Sµκκ(x)
x→0∼ xγκ Tµκκ(x)

x→0∼ xγκ (53)

Sµκκ(x) andTµκκ(x) bounded forx →∞. (54)

To find the explicit form of the radial Dirac–Coulomb Sturmians and their eigenvalues
we rewrite equation (52) in the form

dSµκκ(x)

dx
+ κ
x
Sµκκ(x)−

(
1

2
ε−1+ µ−1

κ

ζ

x

)
Tµκκ(x) = 0 (55)

dTµκκ(x)

dx
− κ
x
Tµκκ(x)+

(
1

2
ε + µκ ζ

x

)
Sµκκ(x) = 0. (56)

We shall solve this system following the method proposed by Kolsrud [16]. Differentiation
of both equations with respect tox followed by elimination of the first derivatives yields a
system of two coupled second-order differential equations[

d2

dx2
− γ

2
κ

x2
+ ηκ
x
+ 1

4

](
Sκ(x)

Tκ(x)

)
+ Cκ
x2

(
Sκ(x)

Tκ(x)

)
= 0 (57)
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where

ηκ = 1
2ζ
(
ε−1µκ + εµ−1

κ

)
(58)

and

Cκ =
( −κ µ−1

κ ζ

−µκζ κ

)
. (59)

Equations (57) may be decoupled by a similarity transformation that diagonalizesCκ
Bκ = A−1

κ CκAκ . (60)

The spectral matrixBκ and the modal matrixAκ are

Bκ =
(−γκ 0

0 γκ

)
(61)

Aκ =
(

1 µ−1
κ ζ
−1(κ − γκ)

µκζ
−1(κ − γκ) 1

)
. (62)

Denoting (
Fµκκ(x)

Gµκκ(x)

)
= A−1

κ

(
Sµκκ(x)

Tµκκ(x)

)
(63)

we rewrite equation (57) in the form[
d2

dx2
−
(
γκ + 1

2

)2− 1
4

x2
+ ηκ
x
+ 1

4

]
Fµκκ(x) = 0 (64)[

d2

dx2
−
(
γκ − 1

2

)2− 1
4

x2
+ ηκ
x
+ 1

4

]
Gµκκ(x) = 0. (65)

As in the non-relativistic case discussed in section 2, it is convenient to change the
differentiation variable fromx to ix. This yields a pair of Whittaker equations[

d2

d(ix)2
−
(
γκ + 1

2

)2− 1
4

(ix)2
+ −iηκ

ix
− 1

4

]
Fµκκ(x) = 0 (66)[

d2

d(ix)2
−
(
γκ − 1

2

)2− 1
4

(ix)2
+ −iηκ

ix
− 1

4

]
Gµκκ(x) = 0. (67)

Their solutions regular atx = 0 are [10, 11]

Fµκκ(x) = AµκκM−iηκ ,γκ+1/2(ix) (68)

Gµκκ(x) = BµκκM−iηκ ,γκ−1/2(ix) (69)

whereAµκκ andBµκκ are constants independent onx. Hence, on utilizing equations (62)
and (63), we find

S̃µκκ (x) = AµκκM−iηκ ,γκ+1/2(ix)+ Bµκκµ−1
κ ζ
−1(κ − γκ)M−iηκ ,γκ−1/2(ix) (70)

T̃µκκ (x) = Aµκκµκζ−1(κ − γκ)M−iηκ ,γκ+1/2(ix)+ BµκκM−iηκ ,γκ−1/2(ix). (71)

The tilde indicates that so far we have ignored the boundary condition imposed on the
functionsSµκκ(x) andTµκκ(x) at the infinity. Since the functions̃Sµκκ(x) and T̃µκκ (x) are
solutions of the pair of coupled first-order differential equations (55) and (56), the ratio of



4972 R Szmytkowski

the constantsAµκκ andBµκκ is fixed. Substituting equations (70) and (71) into equation (55)
we obtain
Aµκκ

Bµκκ
= −µ−1

κ ζ
−1(κ − γκ)

× iM ′−iηκ ,γκ−1/2(ix)− (γκ/x)M−iηκ ,γκ−1/2(ix)− 1
2ε
−1µκζ

−1(κ + γκ)M−iηκ ,γκ−1/2(ix)

iM ′−iηκ ,γκ+1/2(ix)+ (γκ/x)M−iηκ ,γκ+1/2(ix)− 1
2ε
−1µκζ−1(κ − γκ)M−iηκ ,γκ+1/2(ix)

(72)

where the prime denotes differentiation with respect to theargument. Since the left-hand
side of equation (72) is independent ofx, the same must be true for the right-hand side and
we may choose the value ofx in this equation at our convenience. Choosingx = 0 and
making use of the limiting relation (192) we obtain

Aµκκ

Bµκκ
= −iµ−1

κ ζ
−1 ηκκ + ξκγκ

2γκ(2γκ + 1)
(73)

where

ξκ = 1
2ζ
(
ε−1µκ − εµ−1

κ

)
. (74)

The parametersηκ , ξκ , κ andγκ are related by

η2
κ − ξ2

κ = ζ 2 = κ2− γ 2
κ . (75)

On applying equation (73) we find

S̃µκκ (x) = Cµκκ
[
M−iηκ ,γκ−1/2(ix)− i

ηκκ + ξκγκ
2γκ(2γκ + 1)(κ − γκ)M−iηκ ,γκ+1/2(ix)

]
(76)

T̃µκκ (x) = εCµκκ
κ + γκ
ηκ − ξκ

[
M−iηκ ,γκ−1/2(ix)− i

ηκκ + ξκγκ
2γκ(2γκ + 1)(κ + γκ)M−iηκ ,γκ+1/2(ix)

]
(77)

whereCµκκ is a multiplicative constant factor. It appears that functions (76) and (77) may
be rewritten in forms more suitable for applications by using recurrence relations obeyed
by the Whittaker function. Making use of equations (199) and (200) we obtain

S̃µκκ (x) =
1

2
Cµκκ(ix)

−1/2

[(
1− i

κ + γκ
ηκ − ξκ

)
M−iηκ−1/2,γκ (ix)

+
(

1+ i
κ + γκ
ηκ − ξκ

)
M−iηκ+1/2,γκ (ix)

]
(78)

T̃µκκ (x) =
1

2
iεCµκκ(ix)

−1/2

[(
1− i

κ + γκ
ηκ − ξκ

)
M−iηκ−1/2,γκ (ix)

−
(

1+ i
κ + γκ
ηκ − ξκ

)
M−iηκ+1/2,γκ (ix)

]
. (79)

In the following we shall need asymptotic forms ofS̃µκκ (x) andT̃µκκ (x) for large values of
x. Such forms are readily obtained by utilizing equations (78) and (79) and the asymptotic
expansion (193). One finds

S̃µκκ (x)
x→∞−→ 1

2D
(+)
µκκ

exp[i( 1
2x + ηκ ln x − 1

2πγκ − σγκ (ηκ)− φ(+)κ )]

+ 1
2D

(−)
µκκ

exp[−i( 1
2x + ηκ ln x − 1

2πγκ + σγκ (−ηκ)− φ(−)κ )] (80)

T̃µκκ (x)
x→∞−→ 1

2iεD(+)
µκκ

exp[i( 1
2x + ηκ ln x − 1

2πγκ − σγκ (ηκ)− φ(+)κ )]

− 1
2iεD(−)

µκκ
exp[−i( 1

2x + ηκ ln x − 1
2πγκ + σγκ (−ηκ)− φ(−)κ )] (81)
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whereD(±)
µκκ

are multiplicative factors related toCµκκ by

D(±)
µκκ
=
∣∣∣∣1∓ i

κ + γκ
ηκ − ξκ

∣∣∣∣ 0(2γκ + 1)e(iγκ−ηκ )π/2

|0(γκ + 1± iηκ)| Cµκκ (82)

while

φ(±)κ = ∓arg

(
1∓ i

κ + γκ
ηκ − ξκ

)
. (83)

The Coulomb phaseσγ (η) has been defined by equation (16).
We are now in a position to find the spectrum of the Sturm–Liouville problem (52)–

(54). We ask: for what values of the parameterµκ are the functions̃Sµκκ(x) and T̃µκκ (x)
bounded forx → ∞? It is evident from equations (80) and (81) that this happens if and
only if the parameterηκ premultiplying lnx in the arguments of the exponential functions
is real (otherwise, if Imηκ 6= 0, the functionsS̃µκκ (x) and T̃µκκ (x) diverge asymptotically
asx |Im ηκ |). Allowing for complex values ofµκ , we may rewrite equation (58) in the form

ηκ = 1
2ζε
−1|µκ |−2[(|µκ |2+ ε2)Reµκ + i(|µκ |2− ε2)Imµκ ]. (84)

We see that the condition

Im ηκ = 0 (85)

is equivalent to

Imµκ = 0 or |µκ | = ε. (86)

We must remember, however, that the valueµκ = 0 must be excluded from the set admitted
by equation (86) since ifµκ = 0 thenηκ = ±∞. Consequently, we arrive at the conclusion
that the spectrum for the problem (52)–(54) consists of the real axis with the pointµκ = 0
excluded plus a circumference in the complexµκ -plane of radiusε centred at the origin

−∞ < µκ < 0 or 0< µκ < +∞ or |µκ | = ε. (87)

Since the eigenvalueµκ is independent of the quantum numberκ, in what follows we shall
omit the indexκ at the eigenvalue and its functionsηκ andξκ .

A schematic plot of the spectrum ofµ-eigenvalues is shown in figure 1. A plot of the
functionη(µ) for realµ is drawn in figure 2 while in figure 3 a plot of the functionη(argµ)
for µ from the circumference|µ| = ε is sketched.

The fact thatη is real may be exploited to transform equations (80) and (81) to more
symmetric forms. Making use of the second of the relations (18) one obtains

Sµκ(x)
x→∞−→ 1

2D
(+)
µκ exp[i( 1

2x + η ln x − 1
2πγκ − σγκ (η)− φ(+)κ )]

+ 1
2D

(−)
µκ exp[−i( 1

2x + η ln x − 1
2πγκ − σγκ (η)− φ(−)κ )] (88)

Tµκ(x)
x→∞−→ 1

2iεD(+)
µκ exp[i( 1

2x + η ln x − 1
2πγκ − σγκ (η)− φ(+)κ )]

− 1
2iεD(−)

µκ exp[−i( 1
2x + η ln x − 1

2πγκ − σγκ (η)− φ(−)κ )]. (89)

Henceforth we shall find it convenient to distinguish explicitly between the Sturmians
corresponding to real and complex eigenvalues. Therefore we shall make a notational
change. We shall useS(r)µκ (x) and T (r)µκ (x) to denote the Sturmians corresponding to real
eigenvaluesµ and S(c)µκ (x) and T (c)µκ (x) to denote those Sturmians which correspond to
eigenvalues from the circumference in the complexµ-plane.

In the event of real eigenvaluesµ the asymptotic expressions (88) and (89) may be still
simplified. Indeed, in this case the parameterξ is real and one has

Dµκ ≡ D(−)
µκ = D(+)

µκ φκ ≡ φ(−)κ = φ(+)κ (Imµ = 0). (90)
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Figure 1. The spectrum ofµ-eigenvalues for the Sturm–Liouville problem (52)–(54). The
spectrum consists of the real axis, with zero excluded, plus the complex circumference|µ| = ε.

On combining this result with equations (88) and (89) one obtains

S(r)µκκ (x)
x→∞−→ Dµκ cos( 1

2x + η ln x − 1
2πγκ − σγκ (η)− φκ) (91)

T (r)µκ (x)
x→∞−→−εDµκ sin( 1

2x + η ln x − 1
2πγκ − σγκ (η)− φκ). (92)

It remains to investigate the problem of the orthogonality and normalization of
the Sturmians

{
( Sµκ(x) Tµκ(x) )

>}. To this end, we consider two equations of the
form (52) satisfied by the Sturmians( Sµκ(x ′) Tµκ(x

′)) )> and ( Sµ′κ(x ′) Tµ′κ(x
′) )>

corresponding to the eigenvaluesµ and µ′, respectively. We premultiply the equation
for ( Sµκ(x ′) Tµκ(x

′) )> by ( Sµ′κ(x ′) Tµ′κ(x
′) ), the equation for( Sµ′κ(x ′) Tµ′κ(x

′) )>

by ( Sµκ(x ′) Tµκ(x
′) ), subtract the results, integrate fromx ′ = 0 to x ′ = x and utilize the

boundary conditions at the lower integration limit obtaining

(µ− µ′)ζ
∫ x

0
dx ′

1

x ′
[Sµκ(x

′)Sµ′κ(x ′)− µ−1µ
′−1Tµκ(x

′)Tµ′κ(x ′)]

= Sµκ(x)Tµ′κ(x)− Sµ′κ(x)Tµκ(x). (93)

The relation (93) is valid for arbitraryx > 0. In particular, it holds for large values ofx.
Assuming in equation (93) thatx →∞ and utilizing the asymptotic relations (88) and (89)
one arrives at

ζ

∫ x

0
dx ′

1

x ′
[Sµκ(x

′)Sµ′κ(x ′)− µ−1µ
′−1Tµκ(x

′)Tµ′κ(x ′)]
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Figure 2. The plot of the functionη(µ) defined by equation (58) for real values ofµ. A positive
value ofζ is assumed.

x→∞−→ 1
2ε[D

(+)
µ′κD

(−)
µκ exp[i(φ(−)κ − φ(+)

′
κ )] +D(+)

µκ D
(−)
µ′κ exp[i(φ(−)

′
κ − φ(+)κ )]]

×sin[(η − η′) ln x − (σγκ (η)− σγκ (η′))]
µ− µ′

+i
1

2
ε
D
(+)
µ′κD

(−)
µκ exp[i(φ(−)κ − φ(+)

′
κ )] −D(+)

µκ D
(−)
µ′κ exp[i(φ(−)

′
κ − φ(+)κ )]

µ− µ′
× cos[(η − η′) ln x − (σγκ (η)− σγκ (η′))]. (94)

Initially we shall consider the case whenµ is real and lies anywhere on the real axis
(excluding zero) whileµ′ is complex and belongs to the circumference|µ′| = ε. In such a
case the differenceµ− µ′ is certainly different from zero. Next, sinceµ is real, it follows
from the definition (58) that|η| > |ζ |. in contrast, sinceµ′ is complex and|µ′| = ε, one has
|η′| < |ζ |. This implies that the differenceη− η′ premultiplying lnx on the right-hand side
of equation (94) does not vanish in the case considered. Whenx (and consequently lnx)
approaches infinity, both terms on the right-hand side of equation (94) oscillate infinitely
rapidly but remain bounded. Therefore, considered as an integral kernel, the right-hand side
of equation (94) is effectively zero and in this sense the Sturmian functions corresponding to
real and complex eigenvalues are mutually orthogonal. The relevant orthogonality relation
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Figure 3. The plot of the functionη(argµ) for complex values ofµ from the circumference
|µ| = ε. A positive value ofζ is assumed.

is ∫ ∞
0

dx
|Z|
x

[S(r)µκ (x)S
(c)
µ′κ(x)− µ−1µ

′−1T (r)µκ (x)T
(c)
µ′κ(x)] = 0. (95)

Next consider the case when bothµ andµ′ are real. Rewriting the differenceη− η′ in
the form

η − η′ = 1
2ζ(µ− µ′)(ε−1− εµ−1µ

′−1) (96)

we find that the asymptotic limit of the fraction in the first term on the right-hand side of
equation (94) is

sin
[
(η − η′) ln x − (σγκ (η)− σγκ (η′))

]
µ− µ′

x→∞−→ π sign[ζ(µ2− ε2)]δ(µ− µ′). (97)

Since in the limitx →∞ the second term on the right-hand side of equation (94) oscillates
infinitely rapidly but remains bounded and therefore is effectively zero, it follows that

ζ

∫ ∞
0

dx
1

x

[
S(r)µκ (x)S

(r)
µ′κ(x)− µ−1µ

′−1T (r)µκ (x)T
(r)
µ′κ(x)

]
= πεD2

µκ sign[ζ(µ2− ε2)] δ(µ− µ′) (98)

(cf equation (90)). Imposing the normalization condition in the form∫ ∞
0

dx
|Z|
x

[
S(r)µκ (x)S

(r)
µ′κ(x)− µ−1µ

′−1T (r)µκ (x)T
(r)
µ′κ(x)

]
= sign(µ2− ε2) δ(µ− µ′) (99)

we find the normalization factor

Dµκ =
√
α

πε
. (100)
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Using this result, referring to equations (76), (77), (82) and (90) and utilizing the relations

cosφκ = 1√
1+

(
κ+γκ
η−ξ

)2
sinφκ =

κ+γκ
η−ξ√

1+
(
κ+γκ
η−ξ

)2
(101)

which stem from definition (83) and from the fact that for realµ the parameterξ is also
real, we obtain the following explicit forms of the radial Sturmians normalized in the sense
of equation (99)

S(r)µκ (x) =
√
α

πε
e(η−iγκ )π/2 cosφκ

|0(γκ + 1+ iη)|
0(2γκ + 1)

×
[
M−iη,γκ−1/2(ix)− i

ηκ + ξγκ
2γκ(2γκ + 1)(κ − γκ)M−iη,γκ+1/2(ix)

]
(102)

T (r)µκ (x) =
√
αε

π
e(η−iγκ )π/2 sinφκ

|0(γκ + 1+ iη)|
0(2γκ + 1)

×
[
M−iη,γκ−1/2(ix)− i

ηκ + ξγκ
2γκ(2γκ + 1)(κ + γκ)M−iη,γκ+1/2(ix)

]
. (103)

If, instead of using equations (76) and (77), we start from equations (78) and (79), we arrive
at

S(r)µκ (x) =
1

2

√
α

πε
e(η−iγκ )π/2

|0(γκ + 1+ iη)|
0(2γκ + 1)

×(ix)−1/2
[
e−iφκM−iη−1/2,γκ (ix)+ eiφκM−iη+1/2,γκ (ix)

]
(104)

T (r)µκ (x) =
1

2
i

√
αε

π
e(η−iγκ )π/2

|0(γκ + 1+ iη)|
0(2γκ + 1)

×(ix)−1/2
[
e−iφκM−iη−1/2,γκ (ix)− eiφκM−iη+1/2,γκ (ix)

]
. (105)

The two forms of the radial Sturmians, (102) and (103) as well as (104) and (105), are
equivalent.

The functionsS(r)µκ (x) andT (r)µκ (x) are real. This result is readily proved by utilizing the
representations (104) and (105) and the complex conjugation formula (198).

Finally, we shall discuss the case when both eigenvaluesµ andµ′ are complex and lie
on the circumference of radiusε centred at the origin. Now the situation is slightly more
complicated than when bothµ andµ′ are real. Indeed, for complexµ andµ′ we cannot
normalize the Sturmians toδ(µ − µ′) since, in principle, the Dirac delta function is not
defined for complex arguments. The difficulty may be overcome, however, because the
eigenvaluesµ andµ′ are not distributed over the whole complex plane but are confined
to the circumference. Any line may be parametrized by a single real parameter and in the
case discussed here it is convenient and natural to parametrize the eigenvaluesµ andµ′ by
their argumentsψ andψ ′, respectively. One has

µ = εeiψ − π < ψ ≡ argµ 6 π (106)

and similarly forµ′. With this choice of the parametrization, it follows from equations (58)
and (74) thatη andξ may be also expressed in terms ofψ

η = ζ cosψ ξ = iζ sinψ. (107)

The analogous relations forη′ and ξ ′ are obtained from equation (107) replacing thereη,
ξ , ψ by η′, ξ ′ andψ ′, respectively. Sinceψ andψ ′ are real and since there are one-to-one
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correspondences between their values and values ofµ andµ′, it is possible to normalize
the Sturmians toδ(ψ − ψ ′).

Let us consider now the fraction in the first term on the right-hand side of equation (94).
In virtue of equations (106) and (107), on utilizing the relation

η − η′ = −ζ(ψ − ψ ′) sin

[
1

2
(ψ + ψ ′)

](
sin
[

1
2(ψ − ψ ′)

]
1
2(ψ − ψ ′)

)
(108)

we find the asymptotic limit of this fraction

sin[(η − η′) ln x − (σγκ (η)− σγκ (η′))]
µ− µ′

x→∞−→ i
π

ε
e−iψ sign(ζ sinψ) δ(ψ − ψ ′). (109)

Since forx → ∞ the second term on the right-hand side of equation (94) is effectively
zero, substitution of the result (109) to equation (94) yields

ζ

∫ ∞
0

dx
1

x
[S(c)µκ (x)S

(c)
µ′κ(x)− µ−1µ

′−1T (c)µκ (x)T
(c)
µ′κ(x)]

= πD(+)
µκ D

(−)
µκ ei(π/2−ψ) exp[i(φ(−)κ − φ(+)κ )] sign(ζ sinψ)δ(ψ − ψ ′). (110)

It is then natural to impose the normalization condition in the form∫ ∞
0

dx
|Z|
x

[S(c)µκ (x)S
(c)
µ′κ(x)− µ−1µ

′−1T (c)µκ (x)T
(c)
µ′κ(x)] = sign(argµ) δ(argµ− argµ′) (111)

(notice that since−π < ψ 6 π one has sign(sinψ) = signψ). Comparison of
equations (110) and (111) gives

π

α
D(+)
µκ D

(−)
µκ ei(π/2−ψ) exp[i(φ(−)κ − φ(+)κ )] = 1 (112)

and upon combining this result with equation (82) one finds

Cµκ =
√
α

π
exp

[
1

2
πη + i

(
1

2
ψ − 1

2
πγκ − 1

4
π

)] |0(γκ + 1+ iη)|
0(2γκ + 1)

× exp
[

1
2i
(
φ(+)κ − φ(−)κ

)]√∣∣∣1− i κ+γκ
η−ξ

∣∣∣ ∣∣∣1+ i κ+γκ
η−ξ

∣∣∣ . (113)

It is now easy to find explicit forms of the radial SturmiansS(c)µκ (x) andT (c)µκ (x). From
equations (76), (77) and (113) and the relation∣∣∣∣1∓ i

κ + γκ
η − ξ

∣∣∣∣ =
√

2
κ ± ζ sinψ

κ − γκ (114)

one obtains

S(c)µκ (x) = |ζ |
√
α

2π
exp

[
1

2
πζ cosψ + i

(
1

2
ψ − 1

2
πγκ − 1

4
π

)]
exp

[
1

2
i(φ(+)κ − φ(−)κ )

]
× [(κ + γκ)2(κ2− ζ 2 sin2ψ)

]−1/4 |0(γκ + 1+ iζ cosψ)|
0(2γκ + 1)

×
[
M−iζ cosψ,γκ−1/2(ix)− i

ζ(κ cosψ + iγκ sinψ)

2γκ(2γκ + 1)(κ − γκ) M−iζ cosψ,γκ+1/2(ix)

]
(115)

T (c)µκ (x) = εζ sign(κ)

√
α

2π
exp

[
1

2
πζ cosψ + i

(
3

2
ψ − 1

2
πγκ − 1

4
π

)]
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× exp

[
1

2
i(φ(+)κ − φ(−)κ )

] [
(κ − γκ)2(κ2− ζ 2 sin2ψ)

]−1/4

×|0(γκ + 1+ iζ cosψ)|
0(2γκ + 1)

[
M−iζ cosψ,γκ−1/2(ix)

−i
ζ(κ cosψ + iγκ sinψ)

2γκ(2γκ + 1)(κ + γκ) M−iζ cosψ,γκ+1/2(ix)

]
. (116)

Equivalently, on combining equations (78), (79), (82), (83) and (113) one obtains

S(c)µκ (x) =
1

2

√
α

π
exp

[
1

2
πζ cosψ + i

(
1

2
ψ − 1

2
πγκ − 1

4
π

)] |0(γκ + 1+ iζ cosψ)|
0(2γκ + 1)

×(ix)−1/2

[(
κ + ζ sinψ

κ − ζ sinψ

)1/4

exp

[
−1

2
i
(
φ(+)κ + φ(−)κ

)]
M−iζ cosψ−1/2,γκ (ix)

+
(
κ − ζ sinψ

κ + ζ sinψ

)1/4

exp

[
1

2
i
(
φ(+)κ + φ(−)κ

)]
M−iζ cosψ+1/2,γκ (ix)

]
(117)

T (c)µκ (x) =
1

2
ε

√
α

π
exp

[
1

2
πζ cosψ + i

(
1

2
ψ − 1

2
πγκ + 1

4
π

)] |0(γκ + 1+ iζ cosψ)|
0(2γκ + 1)

×(ix)−1/2

[(
κ + ζ sinψ

κ − ζ sinψ

)1/4

exp

[
−1

2
i
(
φ(+)κ + φ(−)κ

)]
M−iζ cosψ−1/2,γκ (ix)

−
(
κ − ζ sinψ

κ + ζ sinψ

)1/4

exp

[
1

2
i
(
φ(+)κ + φ(−)κ

)]
M−iζ cosψ+1/2,γκ (ix)

]
. (118)

Taking the complex conjugate of equations (117) and (118), utilizing the fact that

argµ∗ = −argµ φ(±)κ (µ∗) = φ(∓)κ (µ) (119)

and applying formula (198) we find that the functionsS(c)µκ (x) and T (c)µκ (x) possess the
symmetry property

[S(c)µκ (x)]
∗ = iS(c)µ∗κ(x) [T (c)µκ (x)]

∗ = iT (c)µ∗κ(x). (120)

Making use of the orthogonality relations (95), (99) and (111) it is possible to predict
the form of a closure relation obeyed by the radial Sturmians. After little thought one finds

|Z|
x ′
℘

∫ ∞
−∞

dµ sign(µ2− ε2)

(
S(r)µκ (x)

µ−1T (r)µκ (x)

)
( S(r)µκ (x

′) −µ−1T (r)µκ (x
′) )

+|Z|
x ′

∫ π

−π
d(argµ) sign(argµ)

(
S(c)µκ (x)

µ−1T (c)µκ (x)

)
( S(c)µκ (x

′) −µ−1T (c)µκ (x
′) )

= δ(x − x ′)I (121)

where℘ denotes the principal value of the integral following this symbol. It must be
distinctly stated here that although there is a good deal to believe that the closure relation
(121) holds, it appears here as a postulate rather than as a sound theorem. Unfortunately,
the method which we used in [4] to prove the analogous closure relation for the discrete
Dirac–Coulomb Sturmians cannot be applied in the case discussed in this paper. We have
not been able to find a rigorous proof and therefore the problem of showing the validity of
the relation (121) is left open.
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With the radial Sturmians found above we may construct the three-dimensional four-
component spinor Sturmians

8(r,c)
µκmj

(E, r) = 1

r

(
S(r,c)µκ (2λr)�κmj (n)

iT (r,c)µκ (2λr)�−κmj (n)

)
. (122)

The orthogonality relations satisfied by the functions (122), the analogues of the relations
(99), (111) and (95), are∫
R3

d3r
|Z|
r
8(r)†
µκmj

(E, r)VµβVµ′8(r)

µ′κ ′m′j
(E, r) = sign(µ2− ε2)δ(µ− µ′)δκκ ′δmjm′j (123)∫

R3
d3r
|Z|
r
8
(c)†
µ∗κmj (E, r)V

†
µ∗βVµ′8

(c)

µ′κ ′m′j
(E, r) = i sign(argµ)δ(argµ− argµ′)δκκ ′δmjm′j

(124)

and ∫
R3

d3r
|Z|
r
8
(c)†
µ∗κmj (E, r)V

†
µ∗βVµ′8

(r)

µ′κ ′m′j
(E, r) = 0 (125)∫

R3
d3r
|Z|
r
8(r)†
µκmj

(E, r)VµβVµ′8(c)

µ′κ ′m′j
(E, r) = 0 (126)

respectively, where

Vµ =
(
I 0
0 µ−1I

)
. (127)

Throughout the dagger denotes the matrix Hermitian conjugation. The three-dimensional
analogue of the closure relation (121) (cf the remark following the latter equation) is

|Z|
r ′
∑
κmj

℘

∫ ∞
−∞

dµ sign(µ2− ε2)Vµ8(r)
µκmj

(E, r)8(r)†
µκmj

(E, r′)Vµβ

−i
|Z|
r ′
∑
κmj

∫ π

−π
d(argµ) sign(argµ)Vµ8(c)

µκmj
(E, r)8

(c)†
µ∗κmj (E, r

′)V†µ∗β

= δ(r − r′) I. (128)

5. The continuum Dirac–Coulomb Sturmian functions of the second kind

Besides the Sturmians discussed in the preceding section there exists another set of
Sturmian functions related to the continuum Dirac–Coulomb problem. The continuum
Dirac–Coulomb Sturmian functions of the second kind,

8µ̄κκmj (E, r) =
1

r

(
Sµ̄κκ (2λr)�κmj (n)

iT µ̄κκ (2λr)�−κmj (n)

)
(129)

(here λ has the same meaning as in section 4), are defined as those simultaneous
eigenfunctions of the operatorsK and Jz (cf equation (39)) which are solutions of the
Dirac equation[

−ich̄α · ∇+Mκ(βmc
2− EI)− Ze

2

r

]
8µκκmj (E, r) = 0 (130)

and near the singular pointsr = 0 andr = ∞ behave as

r8µ̄κκmj (E, r)
l∼ r → 0rγκ r8µ̄κκmj (E, r) bounded forr →∞. (131)
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In equation (130)Mκ is a matrix of the form

Mκ =
(
µ̄κI 0

0 µ̄−1
κ I

)
(132)

andµ̄κ is an eigenvalue for the problem. Separating off the angular part of the problem and
changing the independent variable fromr to x = 2λr, we find that the radial Sturmians of
the second kind obey the Sturm–Liouville problem consisting of a coupled set of differential
equations(−µ̄κε/2− ζ/x −d/dx + κ/x

d/dx + κ/x −µ̄−1
κ ε
−1/2− ζ/x

)(
Sµ̄κκ (x)

T µ̄κκ (x)

)
= 0 (06 x <∞) (133)

and boundary conditions

Sµ̄κκ (x)
x→0∼ xγκ T µ̄κκ (x)

x→0∼ xγκ (134)

Sµ̄κκ (x) andT µ̄κκ (x) bounded forx →∞. (135)

The problem (133)–(135) need not be solved directly. Indeed, a comparison of the structures
of the two problems (52)–(54) and (133)–(135) shows that the eigenvalueµ̄κ and the
eigenfunctionsSµ̄κκ (x) andT µ̄κκ (x) are related to the solutions of the problem (52)–(54)
in the following manner

µ̄κ = µ−1
κ (136)

(this implies that the spectrum ofµ̄κ -eigenvalues consists of the real axis with zero excluded
plus a circumference in the complex̄µκ -plane of radiusε−1 centred at the origin) and

Sµ̄κκ (x) = constant× Sµκκ(x) T µ̄κκ (x) = constant× µ−1
κ Tµκκ(x). (137)

This may be verified by direct substitution. Henceforth we shall choose the constant in
equation (137) equal to unity. Omitting the unnecessary index at the eigenvalue (cf the
remark following equation (87)) we have

Sµ̄κ(x) = Sµκ(x) T µ̄κ(x) = µ−1Tµκ(x) (138)

and, consequently,

8µ̄κmj (E, r) = Vµ8µκmj (E, r). (139)

The matrixVµ has been defined by equation (127).
The results (136) and (138) and the relations{

δ(µ− µ′) = µ̄2δ(µ̄− µ̄′) (µ, µ′ real)

argµ = −argµ̄ (µ complex)
(140)

allow us to deduce from equations (99), (111), (95) and (121) the following orthogonality
and closure relations satisfied by the radial Sturmians{Sµ̄κ(x)} and{T µ̄κ(x)}∫ ∞

0
dx
|Z|
x

[S(r)µ̄κ (x)S
(r)

µ′κ(x)− T (r)µ̄κ (x)T (r)µ̄′κ(x)] = µ̄2 sign(1− ε2µ̄2)δ(µ̄− µ̄′) (141)∫ ∞
0

dx
|Z|
x

[S(c)µ̄κ (x)S
(c)
µ̄′κ(x)− T (c)µκ(x)T (c)µ̄′κ(x)] = − sign(argµ̄)δ(argµ̄− argµ̄′) (142)∫ ∞

0
dx
|Z|
x

[S(r)µ̄κ (x)S
(c)
µ̄′κ(x)− T (r)µ̄κ (x)T (c)µ′κ(x)] = 0 (143)
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and

|Z|
x ′
℘

∫ ∞
−∞

dµ̄ µ̄−2 sign(1− ε2µ̄2)

(
S
(r)
µ̄κ (x)

T
(r)
µ̄κ (x)

)
( S

(r)
µ̄κ (x

′) −T (r)µ̄κ (x ′) )

−|Z|
x ′

∫ π

−π
d(argµ̄) sign(argµ̄)

(
S
(c)
µ̄κ (x)

T
(c)
µ̄κ (x)

)
( S

(c)
µ̄κ (x

′) −T (c)µ̄κ (x ′) )
= δ(x − x ′) I. (144)

Similarly, from equations (136), (139), (123)–(126) and (128) one infers the following
orthogonality and closure relations for the three-dimensional Sturmians{8µ̄κmj (E, r)}∫
R3

d3r
|Z|
r
8
(r)†
µ̄κmj

(E, r)β8(r)

µ̄′κ ′m′j
(E, r) = µ̄2 sign(1− ε2µ̄2)δ(µ̄− µ̄′)δκκ ′δmjm′j (145)∫

R3
d3r
|Z|
r
8
(c)†
µ̄ ∗κmj (E, r)β8

(c)

µ̄′κ ′m′j
(E, r) = −i sign(argµ̄)δ(argµ̄− argµ̄′)δκκ ′δmjm′j (146)∫

R3
d3r
|Z|
r
8
(c)†
µ̄ ∗κmj (E, r)β8

(r)

µ̄′κ ′m′j
(E, r) = 0 (147)∫

R3
d3r
|Z|
r
8
(r)†
µ̄κmj

(E, r)β8(c)

µ̄′κ ′m′j
(E, r) = 0 (148)

and

|Z|
r ′
∑
κmj

℘

∫ ∞
−∞

dµ̄ µ̄−2 sign(1− ε2µ̄2)8
(r)
µ̄κmj

(E, r)8
(r)†
µ̄κmj

(E, r′)β

+i
|Z|
r ′
∑
κmj

∫ π

−π
d(argµ̄) sign(argµ̄)8(c)

µ̄κmj
(E, r)8

(c)†
µ̄ ∗κmj (E, r

′)β

= δ(r − r′) I. (149)

The reader has certainly noticed that in obtaining the orthogonality and closure relations
for the Sturmians{8µκmj (E, r)} and

{
( Sµκ(x) Tµκ(x) )

>} discussed in section 4 we
have exploited the form and the properties of the differential equations obeyed by these
functions. In contrast, in deriving such relations for the Sturmians of the second kind
we have simply transformed equations (95), (99), (111), (121), (123)–(126) and (128)
without any reference to the differential equations satisfied by the functions{8µ̄κmj (E, r)}
and

{
( Sµ̄κ(x) T µ̄κ(x) )

>}. This suggests that (presumably) distinct orthogonality and
closure relations for the Sturmians of the second kind (and, as a consequence of the
relations (138) and (139), for the Sturmians of the first kind found in section 4, too)
might be found by exploiting properties of the differential equations (130) and (133).
This is indeed the case and initially we shall find the second set of orthogonality
relations for the radial Sturmians of the second kind

{
( ccSµ̄κ(x) T µ̄κ(x) )

>}. To this
end we consider two differential equations of the form (133) satisfied by the functions
( ccSµ̄κ(x

′) T µ̄κ(x
′) )> and ( ccSµ̄′κ(x

′) T µ̄′κ(x
′) )>, respectively. We premultiply

the equation for( ccSµ̄κ(x ′) T µ̄κ(x
′) )> by ( ccSµ̄′κ(x

′) T µ̄′κ(x
′) ), the equation for

( ccSµ′κ(x
′) T µ̄′κ(x

′) )> by ( ccSµ̄κ(x ′) T µ̄κ(x
′) ), subtract the results and integrate from

x ′ = 0 to x ′ = x. Using the fact that the radial Sturmians vanish at the lower integration
limit, we obtain

1
2(µ̄− µ̄′)

∫ x

0
dx ′ [εSµ̄κ(x ′)Sµ̄′κ(x ′)− µ̄−1µ̄

′−1ε−1T µ̄κ(x
′)T µ̄′κ(x ′)]

= Sµ̄κ(x)T µ̄′κ(x)− Sµ̄′κ(x)T µ̄κ(x). (150)
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If x is sufficiently large, the Sturmians appearing on the right-hand side of equation (150)
may be replaced by their asymptotic forms which are readily derivable from equations (88),
(89) and (138). After somewhat tedious manipulations one finds∫ x

0
dx ′ [εSµ̄κ(x ′)Sµ̄′κ(x ′)− µ̄−1µ̄

′−1ε−1T µ̄κ(x
′)T µ̄′κ(x ′)]

x→∞−→ 1
2ε(µ̄+ µ̄′)[D(+)

µ′κD
(−)
µκ

× exp[i(φ(−)κ − φ(+)
′

κ )] +D(+)
µκ D

(−)
µ′κ exp[i(φ(−)

′
κ − φ(+)κ )]]

×sin[(η − η′) ln x − (σγκ (η)− σγκ (η′))]
µ̄− µ̄′ + i

1

2
ε(µ̄+ µ̄′)

[D(+)
µ′κD

(−)
µκ exp[i(φ(−)κ − φ(+)

′
κ )] −D(+)

µκ D
(−)
µ′κ exp[i(φ(−)

′
κ − φ(+)κ )]]

µ̄− µ̄′
× cos[(η − η′) ln x − (σγκ (η)− σγκ (η′))]
+ 1

2ε[D
(+)
µκ D

(+)
µ′κ exp[−i(φ(+)κ + φ(+)

′
κ )] +D(−)

µκ D
(−)
µ′κ exp[i(φ(−)κ + φ(−)

′
κ )]]

× sin[x + (η + η′) ln x − πγκ − (σγκ (η)+ σγκ (η′))]
−i 1

2ε[D
(+)
µκ D

(+)
µ′κ exp[−i(φ(+)κ + φ(+)

′
κ )] −D(−)

µκ D
(−)
µ′κ exp[i(φ(−)κ + φ(−)

′
κ )]]

× cos[x + (η + η′) ln x − πγκ − (σγκ (η)+ σγκ (η′))]. (151)

In the limit x →∞ all terms on the right-hand side of equation (151) oscillate infinitely
rapidly but the first one becomes singular forµ̄ = µ̄′ (this corresponds toµ = µ′) while the
second, third and fourth terms are always bounded. The argument similar to that following
equation (94) leads to the conclusion that in the limitx →∞ the second, third and fourth
terms are effectively zero. Therefore one has∫ x

0
dx ′ [εSµ̄κ(x ′)Sµ̄′κ(x ′)− µ̄−1µ̄

′−1ε−1T µ̄κ(x
′)T µ̄′κ(x ′)]

x→∞−→ 1
2ε(µ̄+ µ̄′)[D(+)

µ′κD
(−)
µκ

× exp[i(φ(−)κ − φ(+)
′

κ )] +D(+)
µκ D

(−)
µ′κ exp[i(φ(−)

′
κ − φ(+)κ )]]

×sin[(η − η′) ln x − (σγκ (η)− σγκ (η′))]
µ̄− µ̄′ (152)

and it remains to analyse the term on the right-hand side of equation (152).
The simplest case occurs whenµ̄ is real andµ̄′ is complex. An analysis identical to

the one preceding equation (95) shows that in this case the radial Sturmians of the second
kind are orthogonal in the sense of∫ ∞

0
dx[S(r)µ̄κ (x)S

(c)
µ̄′κ(x)− µ̄−1µ̄

′−1ε−2T
(r)
µ̄κ (x)T

(c)
µ̄′κ(x)] = 0. (153)

The cases when̄µ andµ̄′ are either both real or both complex are more involved. Consider
at first the case when̄µ and µ̄′ are real. Then one has (cf the definition (58))

η − η′ = 1
2ζ(µ̄− µ̄′)(ε − ε−1µ̄−1µ̄

′−1) (154)

and in the limitx →∞
sin[(η − η′) ln x − (σγκ (η)− σγκ (η′))]

µ̄− µ̄′
x→∞−→−π sign[ζ(1− ε2µ̄2)]δ(µ̄− µ̄′). (155)

On combining this result with equations (90), (100) and (152) we arrive at the orthogonality
relation∫ ∞

0
dx [S(r)µ̄κ (x)S

(r)
µ̄′κ(x)− µ̄−1µ̄

′−1ε−2T
(r)
µ̄κ (x)T

(r)
µ̄′κ(x)]

= − 2αε−1µ̄ sign[ζ(1− ε2µ̄2)]δ(µ̄− µ̄′). (156)
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Consider now the case when bothµ̄ and µ̄′ are complex and belong to the circumference
|µ̄| = |µ̄′| = ε−1. Then one has

η = ζ cosψ ξ = −iζ sinψ (−π 6 ψ ≡ argµ̄ < π) (157)

and, consequently,

η − η′ = −ζ(ψ − ψ ′) sin[1
2(ψ + ψ

′
)]

(
sin[1

2(ψ − ψ
′
)]

1
2(ψ − ψ

′
)

)
. (158)

Hence, it follows that

sin
[
(η − η′) ln x − (σγκ (η)− σγκ (η′))

]
µ̄− µ̄′

x→∞−→ iπεe−iψ sign(ζ sinψ)δ(ψ − ψ ′) (159)

and combining this result with equations (112) and (152) yields the orthogonality relation∫ ∞
0

dx [S(c)µ̄κ (x)S
(c)
µ̄′κ(x)− µ̄−1µ̄

′−1ε−2T
(c)
µ̄κ (x)T

(c)

µ′κ(x)]

= 2αε−1µ̄−1 sign(ζ argµ̄)δ(argµ̄− argµ̄′). (160)

Note that relations (153), (156) and (160) differ from the relations (143), (141) and (142)
obtained before.

From the relations (153), (156) and (160) we may predict the form of thesecond(i.e.
different from that given by equation (144)) closure relation obeyed by the radial Sturmians
{Sµ̄κ(x)} and{T µ̄κ(x)}. We find

− ε

2α
℘

∫ ∞
−∞

dµ̄µ̄−1 sign[ζ(1− ε2µ̄2)]

(
S
(r)
µ̄κ (x)

µ̄−1T
(r)
µ̄κ (x)

)
( S

(r)
µ̄κ (x

′) −µ̄−1ε−2T
(r)
µ̄κ (x

′) )

+ ε

2α

∫ π

−π
d(argµ̄) µ̄ sign(ζ argµ̄)

(
S
(c)
µ̄κ (x)

µ̄−1T
(c)
µ̄κ (x)

)
× ( S(c)µ̄κ (x ′) −µ̄−1ε−2T

(c)
µ̄κ (x

′) )
= δ(x − x ′)I. (161)

The remarks following equation (121) also apply here.
The orthogonality and closure relations for the three-dimensional Sturmians of the

second kind {8µ̄κmj (E, r)}, analogous to the results (156), (160), (153) and (161),
respectively, are∫
R3

d3r8
(r)†
µ̄κmj

(E, r)V µ̄(mc2I − βE)V µ̄′8(r)

µ̄′κ ′m′j
(E, r)

= ch̄αµ̄ sign[ζE(1− ε2µ̄2)]δ(µ̄− µ̄′)δκκ ′δmjm′j (162)∫
R3

d3r8
(c)†
µ̄∗κmj (E, r)V

†
µ̄ ∗(mc

2I − βE)V µ̄′8(c)

µ̄′κ ′m′j
(E, r)

= − ich̄αµ̄−1 sign(ζE argµ̄)δ(argµ̄− argµ̄′)δκκ ′δmjm′j (163)∫
R3

d3r8
(c)†
µ̄ ∗κmj (E, r)V

†
µ̄∗(mc

2I − βE)V µ̄′8(r)

µ̄′κ ′m′j
(E, r) = 0 (164)∫

R3
d3r8

(r)†
µ̄κmj

(E, r)V µ̄(mc2I − βE)V µ̄′8(c)

µ̄′κ ′m′j
(E, r) = 0 (165)

and

c−1h̄−1α−1
∑
κmj

℘

∫ ∞
−∞

dµ̄ µ̄−1 sign[ζE(1− ε2µ̄2)]V µ̄8(r)
µ̄κmj

(E, r)
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×8(r)†
µ̄κmj

(E, r′)V µ̄(mc2I − βE)

+ic−1h̄−1α−1
∑
κmj

∫ π

−π
d(argµ̄) µ̄ sign(ζE argµ̄)V µ̄8(c)

µ̄κmj
(E, r)

×8(c)†
µ̄ ∗κmj (E, r

′)V†µ̄∗(mc2I − βE)
= δ(r − r′)I (166)

where

V µ̄ =
(
I 0
0 µ̄−1I

)
≡ V−1

µ . (167)

From the results obtained thus far one may also deduce the second set of the
orthogonality and closure relations for the three-dimensional Sturmians{8µκmj (E, r)} and
the radial Sturmians{Sµκ(x)} and{Tµκ(x)} which areindependentfrom the relations found
in section 4. On transforming equations (156), (160), (153) and (161) with the aid of the
relations (138) one obtains, respectively,∫ ∞

0
dx [S(r)µκ (x)S

(r)
µ′κ(x)− ε−2T (r)µκ (x)T

(r)
µ′κ(x)] = −2αε−1µ sign[ζ(µ2− ε2)] δ(µ− µ′)

(168)∫ ∞
0

dx [S(c)µκ (x)S
(c)
µ′κ(x)− ε−2T (c)µκ (x)T

(c)
µ′κ(x)] = −2αε−1µ sign(ζ argµ) δ(argµ− argµ′)

(169)∫ ∞
0

dx [S(r)µκ (x)S
(c)
µ′κ(x)− ε−2T (r)µκ (x)T

(c)
µ′κ(x)] = 0 (170)

and

− ε

2α
℘

∫ ∞
−∞

dµµ−1 sign[ζ(µ2− ε2)]

(
S(r)µκ (x)

T (r)µκ (x)

)
( S(r)µκ (x

′) −ε−2T (r)µκ (x
′) )

− ε

2α

∫ π

−π
d(argµ)µ−1 sign(ζ argµ)

(
S(c)µκ (x)

T (c)µκ (x)

)
( S(c)µκ (x

′) −ε−2T (c)µκ (x
′) )

= δ(x − x ′)I. (171)

Similarly, on transforming equations (162)–(166) with the aid of relations (136), (139) and
(140) one arrives at∫
R3

d3r8(r)†
µκmj

(E, r)(mc2I − βE)8(r)

µ′κ ′m′j
(E, r)

= ch̄αµ sign[ζE(µ2− ε2)] δ(µ− µ′)δκκ ′δmjm′j (172)∫
R3

d3r8
(c)†
µ∗κmj (E, r)(mc

2I − βE)8(c)

µ′κ ′m′j
(E, r)

= ich̄αµ sign(ζE argµ)δ(argµ− argµ′)δκκ ′δmjm′j (173)∫
R3

d3r8
(c)†
µ∗κmj (E, r)(mc

2I − βE)8(r)

µ′κ ′m′j
(E, r) = 0 (174)∫

R3
d3r8(r)†

µκmj
(E, r)(mc2I − βE)8(c)

µ′κ ′m′j
(E, r) = 0 (175)

and

c−1h̄−1α−1
∑
κmj

℘

∫ ∞
−∞

dµµ−1 sign[ζE(µ2− ε2)]8(r)
µκmj

(E, r)8(r)†
µκmj

(E, r′)(mc2I − βE)
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−ic−1h̄−1α−1
∑
κmj

∫ π

−π
d(argµ)µ−1 sign(ζE argµ)8(c)

µκmj
(E, r)

×8(c)†
µ∗κmj (E, r

′)(mc2I − βE)
= δ(r − r′) I. (176)

6. Expansions in terms of the continuum Dirac–Coulomb Sturmian functions

Any sufficiently regular two-component spinor function(F (x) G(x))> (not to be
confused with the function defined by equation (63)) defined in the interval 0<

x < ∞ may be expanded in terms of either of the two radial Sturmian sets{
( Sµκ(x) Tµκ(x) )

>} or
{
( Sµ̄κ(x) T µ̄κ(x) )

>}. The integral expansion in terms of the
functions

{
( Sµκ(x) Tµκ(x) )

>} has the form(
F(x)

G(x)

)
= ℘

∫ ∞
−∞

dµχ(r)µκ

(
S(r)µκ (x)

T (r)µκ (x)

)
+
∫ π

−π
d(argµ)χ(c)µκ

(
S(c)µκ (x)

T (c)µκ (x)

)
(177)

where the expansion coefficients are given by (cf equations (168)–(170))

χ(r)µκ = −
ε

2α
µ−1 sign[ζ(µ2− ε2)]

∫ ∞
0

dx [S(r)µκ (x)F (x)− ε−2T (r)µκ (x)G(x)] (178)

χ(c)µκ = −
ε

2α
µ−1 sign(ζ argµ)

∫ ∞
0

dx [S(c)µκ (x)F (x)− ε−2T (c)µκ (x)G(x)]. (179)

The expansion of( F (x) G(x) )> in terms of the Sturmians
{
( Sµ̄κ(x) T µ̄κ(x) )

>} is(
F(x)

G(x)

)
= ℘

∫ ∞
−∞

dµ̄ χ̄ (r)
µ̄κ

(
S
(r)
µ̄κ (x)

T
(r)
µ̄κ (x)

)
+
∫ π

−π
d(argµ̄) χ̄ (c)

µ̄κ

(
S
(c)
µ̄κ (x)

T
(c)
µ̄κ (x)

)
(180)

and it follows from equations (141)–(143) that the coefficientsχ̄
(r)
µ̄κ and χ̄ (c)

µ̄κ are

χ̄
(r)
µ̄κ = µ̄−2 sign(1− ε2µ̄2)

∫ ∞
0

dx
|Z|
x

[S(r)µ̄κ (x)F (x)− T (r)µ̄κ (x)G(x)] (181)

χ̄
(c)
µ̄κ = − sign(argµ̄)

∫ ∞
0

dx
|Z|
x

[S(c)µ̄κ (x)F (x)− T (c)µ̄κ (x)G(x)]. (182)

Similarly, any sufficiently regular four-component spinor function9(r) defined inR3

may be expanded in either of the sets{8µκmj (E, r)} or {8µ̄κmj (E, r)}. One has

9(r) =
∑
κmj

℘

∫ ∞
−∞

dµχ(r)µκmj8
(r)
µκmj

(E, r)+
∑
κmj

∫ π

−π
d(argµ)χ(c)µκmj8

(c)
µκmj

(E, r) (183)

where the coefficientsχ(r)µκmj andχ(c)µκmj are found from equations (172)–(175) to be

χ(r)µκmj = c−1h̄−1α−1µ−1 sign[ζE(µ2− ε2)]
∫
R3

d3r8(r)†
µκmj

(E, r)(mc2I − βE)9(r) (184)

χ(c)µκmj = −ic−1h̄−1α−1µ−1 sign(ζE argµ)
∫
R3

d3r8
(c)†
µ∗κmj (E, r)(mc

2I − βE)9(r) (185)

and

9(r) =
∑
κmj

℘

∫ ∞
−∞

dµ̄ χ̄ (r)µ̄κmj8
(r)
µ̄κmj

(E, r)+
∑
κmj

∫ π

−π
d(argµ̄) χ̄ (c)µ̄κmj8

(c)
µ̄κmj

(E, r) (186)
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where the coefficients̄χ(r)µ̄κmj and χ̄ (c)µ̄κmj are found from equations (145)–(148) to be

χ̄
(r)
µ̄κmj
= µ̄−2 sign(1− ε2µ̄2)

∫
R3

d3r
|Z|
r
8
(r)†
µ̄κmj

(E, r)β9(r) (187)

χ̄
(c)
µ̄κmj
= i sign(argµ̄)

∫
R3

d3r
|Z|
r
8
(c)†
µ̄∗κmj (E, r)β9(r). (188)

7. Conclusions

Two aims have been achieved in this work. First, we have investigated properties of the
continuum Schr̈odinger–Coulomb Sturmian functions. The functions have been constructed
by solving an appropriate eigenvalue problem, properly normalized and shown to form a
non-enumerable set with elements labelled by real eigenvaluesµ covering the whole real
axis,−∞ < µ <∞. The latter result resolves a disagreement between Khristenko [3], who
asserted that eigenvaluesµ ranged from−∞ to +∞ (which agrees with our result), and
Blinder [5, 6], who claimed that eigenvaluesµ were restricted to the real positive half-axis.

The second aim achieved in this paper was the construction of two types of continuum
Dirac–Coulomb Sturmians. It has been shown that both types of the Dirac–Coulomb
Sturmians are closely related and may be found as solutions of generalized Sturm–Liouville
problems for two coupled first-order differential equations, augmented by appropriate
boundary conditions, with eigenvalues chosen in rather unusual ways. It was shown that
eigenvalue spectra for both problems consist of the real axis with zero excluded plus relevant
circumferences in the complex plane centred at zero. Occurrence of the complex eigenvalues
is the consequence of the way in which the eigenvalues in the defining Sturm–Liouville
problems are chosen. Another peculiarity encountered in the course of investigation of
properties of both types of the continuum Dirac–Coulomb Sturmian functions is the existence
of two different kinds of the orthogonality and closure relations obeyed by these functions.
This feature is due to the relationship found between the two types of the Dirac–Coulomb
Sturmians.

The continuum non-relativistic and relativistic Coulomb Sturmian functions may find
applications in analysing those atomic phenomena in which free electrons interact with
charged atomic targets, for example, in electron–ion collisions or in atomic photoionization.
In some theoretical methods used to describe such processes one employs the Coulomb
Green function for continuum eigenenergies [17–20]. Use of the continuum Coulomb
Sturmian functions described in this work offers a possibility to construct an integral
representation of the Coulomb Green function. It seems that by employing the powerful
method of contour integration one may transform that representation to a form which will
be equally useful in applications as forms known before [17–20]. We shall consider this
problem in a later publication.
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Appendix A. The Whittaker function Mηγ(z)

In this appendix we summarize those properties of the Whittaker function of the first kind,
Mηγ (z), which have been useful in studying properties of the continuum Coulomb Sturmian
functions. A more comprehensive treatment of the Whittaker function may be found in
[10, 11].

The functionMηγ (z) is defined in terms of the confluent hypergeometric function

1F1(a; b; z) = 1+ a
b

z

1!
+ a(a + 1)

b(b + 1)

z2

2!
+ a(a + 1)(a + 2)

b(b + 1)(b + 2)

z3

3!
+ · · · (189)

in the following way

Mηγ (z) = zγ+1/2e−z/21F1(γ + −η ; 2γ + 1; z). (190)

It is a solution of the Whittaker differential equation[
d2

dz2
− γ

2− 1
4

z2
+ η
z
− 1

4

]
Mηγ (z) = 0. (191)

In the vicinity of the regular singular pointz = 0 the functionMηγ (z) behaves as

Mηγ (z)
z→0−→ zγ+1/2

(
1− η

2γ + 1
z

)
. (192)

For large values of the argument the functionMηγ (z) has the asymptotic expansion

Mηγ (z)
|z|→∞−→ zγ+1/2e−z/2

[
0(2γ + 1)

0(γ + 1
2 + η)

(−z)−γ−1/2+η + 0(2γ + 1)

0(γ + 1
2 − η)

z−γ−1/2−ηez
]

(193)

valid provided

| arg(−z)| < π and | argz| < π. (194)

The restriction (194) is satisfied if we define

−z = eiπ1(z)z 1(z) =
{
−1 for 0< argz < π

+1 for −π < argz < 0.
(195)

It follows from the relation (190), the definition (189) and the Kummer identity

1F1(a; b; z) = ez1F1(b − a; b;−z) (196)

that

Mηγ (z) = e−iπ(γ+1/2)1(z)M−ηγ (−z). (197)

The following complex conjugation formula stems from the relation (190), the definition
(189) and the Kummer identity (196)

[Mα+iβ,γ (±ix)]∗ = e∓iπ(γ+1/2)M−α+iβ,γ (±ix) (x > 0) (198)

wherex is real and positive whileα, β andγ are real.
The recurrence relations

Mη,γ+1/2(z) = (2γ + 1)z−1/2Mη−1/2,γ (z)− (2γ + 1)z−1/2Mη+1/2,γ (z) (199)

Mη,γ−1/2(z) = γ − η
2γ

z−1/2Mη−1/2,γ (z)+ γ + η
2γ

z−1/2Mη+1/2,γ (z) (200)

have been useful in obtaining the representations (78) and (79) of the radial Sturmians from
those given by equations (76) and (77).
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Appendix B. Coulomb versus non-Coulomb Sturmians

Let us consider a class of spherically symmetric real potentialsV (r) such that

lim
r→0

rV (r) = constant lim
r→∞ r

2V (r) = constant′ (201)

(note that potentials vanishing asymptotically as the Coulomb potential do not fall into this
class). For a given potentialV (r) from the class considered we define the non-relativistic
positive-energy radial Sturmians{Pµll(r)} as those solutions of the differential equation[

d2

dr2
− l(l + 1)

r2
− µlU(r)+ λ2

]
Pµll(r) = 0 (06 r <∞) (202)

which obey the boundary conditions

Pµll(r)
l∼ r → 0rl+1 Pµll(r) bounded forr →∞. (203)

In equation (202)U(r) = 2mV (r)/h̄2, λ2 = 2mE/h̄2 > 0 is a parameter andµl is an
eigenvalue. It is known [21] that problem (202) and (203) has a continuous spectrum
of non-degenerate real eigenvalues−∞ < µl < ∞ and that the eigenfunctions behave
asymptotically as

Pµll(r)
r→∞−→ Bµll sin(λr − 1

2
πl + δl(µl)) (204)

whereBµll is a normalization factor andδl(µl) (not to be confused with the Kronecker delta
symbol or the Dirac delta function) is a phase shift. The question of orthogonality of the
Sturmians{Pµll(r)} may be investigated in a manner analogous to that we have adopted in
section 2. We change the independent variable fromr to r ′ and consider two differential
equations of the form (202) obeyed by the functionsPµll(r

′) andPµ′l l (r
′) corresponding to

the eigenvaluesµl andµ′l , respectively. On premultiplying the first equation byPµ′l l (r
′), the

second byPµll(r
′), subtracting, integrating fromr ′ = 0 to r ′ = r and utilizing the boundary

condition satisfied by the Sturmians atr ′ = 0 we obtain

(µl − µ′l)
∫ r

0
dr ′ U(r ′)Pµll(r

′)Pµ′l l (r
′) = Pµ′l l (r)

dPµll(r)

dr
− Pµll(r)

dPµ′l l (r)

dr
. (205)

For large values ofr the Sturmians on the right-hand side of equation (205) may be replaced
by their asymptotic forms (204). Passing to the limitr →∞ we find∫ ∞

0
dr U(r)Pµll(r)Pµ′l l (r) = −λBµllBµ′l l

sin[δl(µl)− δl(µ′l)]
µl − µ′l

. (206)

From this result one infers that for potentials which vanish asymptotically faster than the
Coulomb potential positive-energy Sturmians arenot orthogonal in the sense in which the
Coulomb Sturmians{Sµll(2λr)} are. For, if the functions{Pµll(r)} could be orthogonalized
to the delta functionδ(µl−µ′l), the right-hand side of equation (206) would be singular for
µl = µ′l . However, considering the fraction appearing on the right-hand side of equation
(206) which is the only term which could possibly give rise to the singularity, one finds

sin[δl(µl)− δl(µ′l)]
µl − µ′l

µ′l→µl−→ ∂δl(µl)

∂µl
. (207)

In general, the derivative on the right-hand side of equation (207) is finite and this implies
that the positive-energy non-Coulomb Sturmians are not orthogonal in the sense of the Dirac
delta function. This fact diminishes the value of such functions for potential applications
in quantum mechanical problems.
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Comparing the right-hand sides of equations (23) and (207) one notes that the
exceptional position which the Coulomb Sturmians occupy among other functions of that
sort is due to the long-range nature of the Coulomb potential resulting in the logarithmic
phaseη ln 2λr appearing in the asymptotic form of the eigenfunctions. It is just this factor
which causes orthogonality of the Coulomb Sturmians in the sense of equation (25).

Analogous considerations may be carried out in the relativistic case.
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